1. Getting Started
Creating New Project

First open Gideros Studio. Then create a new project from “File—~New Project” menu. Name your project “HelloBall":

Name: New Project

. Location: C:/Documents and Settings/gideros,Desktop

' [V] Create directary for project [ok

Will create: C:/Documents and Settings/gideros/Desktop/Mew Praject/Mew Project.gproj

Here is our development environment where you create/manage assets and run your code:

Be2c|4TDh dsas Bre
| Project |
il Hello Ball

Output

i
S
P

Your First Code

Right click the project name at Library and select “Add New File...” to add your first Lua code:

File Edit Compile Player Help

Hea/ el shb vwas »dr@

|wa main.lua® (£ |
‘ [§ Hello Ball N print ("Hello Ball")
[mainlua | Add NewFile... |
Add Existing Files...
New Folder
Sort
Properties...

Name your file “main.lua” and click OK.

File Name: |newﬁ|e.lua |

Location: |C:Nsers!bcgoroeﬁnﬂ—|ello Ball |[Browse...]

Now double-click main.lua and write

print("Hello Ball")

Eile Edit Compile Player Help
He e ldih & sé& b @
|Pr°]iEd-" | main.lua [£J |
4 [Hello Ball 1 print("Hella Ball")

g main.lua
Preview

p i P r

|output

Running in Gideros Player

At the first part of this tutorial, we just want to run our code in “Gideos Player” and print “Hello Ball” to the console.

Now select “Player—Start Local Player” to start Gideros Player.

@ Gideros Player

File ¥iew Hardware

=l

LOCAL IP INFO:
192.168.1.5

After “Gideros Player” opens, the start and stop icons become enabled.
» b @

This means “Gideros Studio” connects to “Gideros Player” and ready to upload your code and assets and then run the project. Press
start button (or select “Player—Start” from main menu) to run the project:

fao
& Hello Ball.gproj - Gideros
Eile Edit Compile: Player Help
HB/9€ 4 hh ¥ sa s/ @
|Pf0]'EC\t | main.lua [|
4 [Hello Ball =
& mainlua

print ("Hello Ball™})

Preview

2] 1 b

|output

main.lua is uploading.
Uploading finished.
Hello Ball

Now you see the output of your project at the “Output” panel.

Adding Assets

Now let's add some images to our asset library. Download field.png (assets/field.png) and ball.png (assets/ball.png) and copy these

images to your project directory. Then, right click the project name at Library and select “Add Existing Files...” to add your image files to
the project.

File Edit Compile Player Help
HBa/ e dsIhD vywas mb @

|Project1= | | main.Jua* [£] |
4. Hello Ball & print ("Hello Ball")
{é} main.lu Add New File...
Add Existing Files...
New Folder
Sort
Properties...

More Code

And then write the code below:

local background = Bitmap.new(Texture.new("field.png"))
stage:addChild(background)

local ball = Bitmap.new(Texture.new("ball.png"))

ball.xdirection = 1

I
=

ball.ydirection
ball.xspeed = 2.
ball.yspeed = 4.

stage:addChild(ball)

function onEnterFrame(event)
local x = ball:getX()
local y = ball:getY()

¥ = ¥ + (ball.xspeed * ball.xdirection)
y = y + (ball.yspeed * ball.ydirection)

if x < @ then
ball.xdirection = 1
end

if x > 320 - ball:getWidth() then
ball.xdirection = -1
end

if y < @ then
ball.ydirection = 1
end

if y > 488 - ball:getHeight() then
ball.ydirection = -1
end

ball:setX(x)
ball:setY(y)
end

stage:addEventListener (Event.ENTER_FRAME, onEnterFrame)

Eile Edit Compile Player Help
He/ 2 s Db dsws »r @

IPFDjECt | main.luz [£J |
4 (1 Jumping Ball T [EEET -
250 ballpng i 5
|§| field.png 3 I nice example of a ball moving on the screen
& main.lua il
5 This code is MIT licensed, see http://www.opensource.org/licenses/mit-licen:
L] {C) 2010 — 2011 Gideros Mobile
7
8 11
9
10 —— load the background and add as a child of stage
11 local background = Bitmap.new (Texture.new ("field.png™))
1z stage:addChild (background)
13
14 —— create a ball bitmap object (Bitmap class inherits from Sprite class)
X5 local ball = Bitmap.new{Texture.new{"ball.png™}})
16
17 —— in Gideros, every created object is an ordinary Lua table
18 —— therefore, we can store our custom fields in this table
15 ball.xdirection = 1
20 ball.yvdirection = 1 -
‘ ,

After pressing start, you'll have a nice ball moving around and bouncing from the edges:

-
'° Jumping Balls2 - Gideros Player EI 2

File View Hardware

Running on Device Player

10S device

To run project on 10S device you need to build and install the GiderosiOSPlayer XCode project (GiderosiOSPlayer.zip) comes with the
installation. You need to be an approved Apple Developer for iOS and need to install the XCode with iOS SDK.

Android device
To run project on Android device you need to install the GiderosAndroidPlayer.apk (comes with the installation) on your device.
Run project

After installing GiderosPlayer to your device, open the player and enter the IP of your device (which will be shown in Gideros Player)
from the menu “Player—Player Settings”.

@ Jumping Ball.gproj - Gideros
Eile Edit Compile Iglayel Help
BE® 2 & d&| & Statlocal Player Crl+Shift+P
Proect | b Stat CtrleR
4 1) JumpingBall | Stop Ctrl+Shift+R
{5 ball.png
5] field.png Player Settings... a ball moving
o main.ua 2
& Thi=s code is MIT licensed, =ee
13 (C) 2010 - 2011 Gideros Mobile
7
g 11
a
10 —— load the background and add
11 local background = Bitmap.new(:
12 ztage!addChild (background)

When the Start and Stop buttons appear enabled, press Start to run your code on device.

2. Deployment

This document will discuss the build and deployment processes of Gideros Player and your application to devices.

For I0S devices, you must be an approved Apple Developer for iOS and install the iOS SDK (requires Intel-based Mac running Snow
Leopard).

For Android devices you'll need Android SDK and Eclipse or other Android project compatible IDE.

Gideros Player for devices allows you to see and test your application on device instantly. After you deploy and open Gideros Player
on your device, you see the IP of your device. Enter this IP from “Player—Player Settings” menu:

% Jumping Ball.gproj - Gideros

File Edit Compile Help

H& 2 e ‘21 Start Local Player Ctrl+Shift+P
Project | Start Ctrl+R
4 i Stop Ctrl+Shift+R
Player Settings... a ball moving
& main.lua g
& MIT licensed, see
@ ideros Mobile
7
8
g
10 —- load the background and add
11 local background = Bitmap.new(:
1z stage:addChild (background)

When you press start button, your codes and asset files are transferred to your iOS device via WiFi and your application starts.

Deploy Gideros Player to Devices

For 10S

There is a universal project GiderosiosPlayer.zip , which comes with the installation. You need to extract this zip file and open, build,
deploy this project from Xcode.

For Android

There is a ready to use application for Android development GiderosAndroidPlayer.apk which comes with the installation. You can
install it directly on your usin USB data transfer cable, or memory card on your phone, or uploading it to a server (as dropbox) and
accessing it from there.

Deploy Your Application to iOS Devices

To deploy your application to iPhone/iPad you need to:

1. Export your application as Xcode project
2. Build and deploy Xcode project to actual device

For the second step, you need Intel-based Mac running Snow Leopard and Apple Developer License.
To deploy your application to Android you need to:

1. Export your application as Android project
2. Import exported project into Eclipse
3. Run project from Eclipse

First step is done through “File—Export Project” menu:

= Weather.gproj - Gideros

Edit Compile Player Help

Mew Project.. Ctrl+N T 3 -
Open Project... Ctrl+0 main.lua
Save Project 1 B--11
Close Project 2
£ Thi=s example displ:
Recent Projects 3 4
5 This code iz MIT 1.
Export Project... & (c) i
7
Exit Ctrl+Q 8
H . F| g
L4 mainlua 10 -- add background
& vardump.lua 11 stage:addChild (Binm
o xmllua 1z
13 —-— load fonts

Device player with plugins
Similar to how you can deploy players on devices, you can also build a custom player, with built in plugins for specific platforms.

For example, if you have an Ad framework plugin for Android, you simply build Gideros Android player with this plugin and deploy it to
device, to test it as you would with normal Android device player.

To deploy custom player with plugins to Android

1. Export your Gideros project as Android project
2. Add plugin as described in your specific plugin installation instruction
3. In your exported project, inside assets folder there is another assets folder, simply delete it, leaving upper assets folder empty
4. Build this project to run on your device
5. You now have Gideros Android player which behaves exactly the same as normal player, but has the functionalities of applied
plugin
To deploy custom player with plugins to 10S

1. Export your Gideros project as 10S project

2. Add plugin as described in your specific plugin installation instruction

3. In your exported project, open AppDelegate.m file

4. Change gdr_initialize(..., false) to gdr_initialize(..., true)

5. You now have Gideros I0S player which behaves exactly the same as normal player, but has the functionalities of applied
plugin

3. Classes in Gideros

Lua does not support classes the way that languages like C++, Java and ActionScript do. But Lua is a multi-paradigm language and have
roots from prototype-based languages. In Lua, each object can define its own behaviour through metatables. Therefore, it is possible
to emulate OO programming and classes in Lua.

(For the detailed discussion of object oriented programming in Lua, please refer to http://www.lua.org/pil/16.html (http://www.lua.org
/pil/16.html))

Gideros follows the same paradigm in its API design. Each instance created by Gideros API is a Lua table with a metatable attached.

Creating Instances

Instances in Gideros is created through new function. For example, to create a Sprite, Texture, Bitmap and a Timer instance:

local sprite = Sprite.new()
local texture = Texture.new("image.png")
local bitmap = Bitmap.new(texture)

local timer = Timer.new(1l@ee, @)

Inheritance

core.class function is used to create your own classes through inheritance. You can create your own classes like:
MyClass = Core.class()

or inherit from Gideros API's own classes (EventDispatcher , Sprite, etc.). For example, you can create your EventDispatcher class as:
MyEventDispatcher = Core.class{EventDispatcher)

By using Inheritance, you can design and implement the visual elements of your game separately:

StartButton = Core.class(Sprite) -- create your own start button class
Menu = Core.class(Sprite) -- create your own menu class
Player = Core.class(Sprite) -- create your own player class

function Player:walk()
-- walk Llogic
end

function Player:jump()
-- jump logic

end
stage:addChild(Player.new()) -- create and add a player instance to the stage
When an instance is created, init function is called to do the initialization:
Player = Core.class(Sprite)
function Player:init()
-- do the initialization of Player instance
self.health = 100
self.speed = 3
end
local player = Player.new() -- after Player instance is created, init function is called
Whether to use inheritance or not is related to your programming taste. It's possible to implement a whole game without creating

custom classes. You can refer to “Jumping Ball” and “Jumping Balls” examples to see the difference between designing your code with
classes or not.

4. Events

Events are the central mechanism to handle responses and they allow to create interactive applications.

All classes that dispatch events inherit from Eventdispatcher . The target of an event is a listener function and an optional data value.
When an event is dispatched, the registered function is called. If the optional data value is given, it is used as a first parameter while
calling the listener function.

In Gideros, events can be divided into two categories: built-in events which are generated by the system (e.g. ENTER_FRAME event,
touch events, timer events, etc.) and custom events which can be generated by the user. According to their event type, built-in events can
be broadcasted to multiple targets (e.g. ENTER_FRAME event, touch events, etc.) or can be dispatched to a single target (e.g. timer
event).

ENTER_FRAME Event

The Gideros runtime dispatches the built-in Event.ENTER_FRAME eventto sprite instances before rendering the screen. Visual changes
made by any Event.ENTER_FRAME listener function will be visible at next frame.

This first basic example shows a moving sprite one pixel to the right at each frame. In this example, onEnterFrame function increases
the x-coordinate of a sprite object at each frame:

local sprite = Sprite.new()

local function onEnterFrame(event)
sprite:setX(sprite:getX() + 1)

end
sprite:addEventListener(Event.ENTER_FRAME, onEnterFrame)

The next example shows 3 independent sprites moving one pixel to the right at each frame. In this example, we use the optional data
parameter to move independent sprites with one common listener function:

local spritel = Sprite.new()
local sprite2 = Sprite.new()

local sprite3 = Sprite.new()

local function onEnterFrame(self, event)
self:setX(self:getX() + 1)

end
spritel:addEventListener({Event.ENTER_FRAME, onEnterFrame, spritel)
sprite2:addEventListener(Event.ENTER_FRAME, onEnterFrame, sprite2)
sprite3:addEventListener(Event.ENTER_FRAME, onEnterFrame, sprite3)
The last example shows subclassing of the sprite class and registering Event.ENTER_FRAME :

MySprite = Core.class(Sprite)
function MySprite:init()

self:addEventListener(Event .ENTER_FRAME, self.onEnterFrame, self)
end
function MySprite:onEnterfFrame(event)

self:setX(self:getX() + 1)

end

Note: Event.ENTER_FRAME event is dispatched to all sprite instances no matter these instances are on the scene tree or not.

Mouse, Touch and Key Events

Gideros runtime dispatches mouse and touch events when the the user's finger touches the screen. Mouse events are mainly used in
single-touch whereas touch events are used in multi-touch applications. Key events are dispatched when user presses and releases a
physical key on the keyboard.

The mouse, touch and key events are dispatched to sprite instances which are on the scene tree. If a sprite instance is not on the
scene tree, this instance doesn't receive mouse, touch and key events.

Note: Even if touch or mouse doesn't hit the sprite instance, the instance receive mouse/touch events.

The order of dispatch is determined by the hierachy of the scene tree. The sprite instance that is drawn last (top-most sprite) receives
the event first. The next sprite at the bottom of the top-most sprite receives the event second and so on.

For example, assume that we have an sprite hierachy like this:

which is constructed by the code below:

local = Sprite.new()

local

Sprite.new()

local Sprite.new()

local Sprite.new()

local

Sprite.new()

m m O N @ D
n

local = Sprite.new()
:addChild(B)
raddChild(C)
raddChild(D)
:addChild(E)
:addChild(F)

M m @ B B

In this hiearchy, the drawing order is A, B, C, D, E, F while mouse/touch event receive order is F, E, D, C, B, A.

Stopping an Event Dispatch

It is possible to stop the propagation of mouse, touch and key events. To stop an event dispatch, invoke the Event:stopPropagation()
function on the Event object passed to the listener function. In this example below, mouse_bown event is dispatched only to F, E, D and
C

local A = Sprite.new()
local B = Sprite.new()
local C = Sprite.new()
local D = Sprite.new()
local E = Sprite.new()
local F = Sprite.new()

-- stop propagation at sprite C

C:addEventListener(Event .MOUSE_DOWN, function(event) event:stopPropagation() end)

raddChild(B)
raddChild(C)
raddChild(D)
raddChild(E)
raddChild(F)

N W @ B

Timer Events

The Timer class is used for executing code at specified time intervals. Each Timer object dispatches Event.TIMER event at specified
frequency.

The steps to use Timer class are as follows:

Create a new Timer object with specified frequency and specified total number of Event.TIMER events to be triggered. For example,
the following code sets the frequency to 1000 miliseconds and sets the count to 5.

local timer = Timer.new(18€@, 5)
Register to the Event.TIMER event with a listener function:
local function onTimer(event)
-- will be executed 5 times at 1088 miliseconds intervals
end
timer:addEventListener(Event.TIMER, onTimer)
Start the timer.
timer:start()
To stop the timer, you can use Timer:stop() function:
timer:stop()
Event.TIMER_COMPLETE event is triggered after finishing the specified number of timer events.
local function onTimerComplete(event)
-- will be executed after the specified number of timer events (5) are dispatched
end

timer:addEventListener(Event.TIMER_COMPLETE, onTimerComplete)

Also, it is possible to pause and resume all the timers in your application. It is very useful when you are implementing a pause/resume
functionality in your game:

Timer.pauseAllTimers() -- pause all timers. if all timers are alredy paused, does nothing.

Timer.resumeAllTimers() -- resume all timers. if all timers are alredy running, does nothing.

ADDED_TO_STAGE and REMOVED_FROM_STAGE Events

If a sprite is added to the scene tree, the sprite instance and all of it's descendants receive Event.ADDED_TO_STAGE event. Similarly, if a
sprite is removed from the scene tree, the sprite instance and all of it's descendants receive Event.REMOVED_FROM_STAGE event. These
events are used to detect when a sprite instance is added to, or removed from, the scene tree. For example, by the help of these
events, it is possible to register Event.ENTER_FRAME event only for the sprites that are on the scene tree:

MySprite = Core.class(Sprite)

function MySprite:init()
self:addEventListener(Event.ADDED_TO_STAGE, self.onAddedToStage, self)
self:addEventListener(Event.REMOVED_FROM_STAGE, self.onRemovedFromStage, self)

end

function MySprite:onAddedToStage(event)
self:addEventListener(Event.ENTER_FRAME, self.onEnterFrame, self)

end

function MySprite:onRemovedFromStage(event)
self:removeEventListener(Event.ENTER_FRAME, self.onEnterFrame, self)

end

function MySprite:onEnterFrame(event)
-- enter frame Llogic

end

Custom Events

To dispatch a new custom, user defined event, create the event with Event.new() function and dispatch it with
EventDispatcher:dispatchEvent() .

ClassA = Core.class(EventDispatcher)

ClassB = Core.class(EventDispatcher)

function ClassA:funcA(event)
print("funcA”, self, event:getType(), event:getTarget())

end

local a = ClassA.new()
local b = ClassB.new()

b:addEventListener("myevent”, a.funcA, a) -- when b dispatches an “"myevent” event,
- a.funcA will be called with 'a’

- as first parameter

b:dispatchEvent (Event.new(" "myevent")) -- will print "funcA”

List of all Built-in Events
ENTER FRAME

Dispatched to all sprite instances before rendering the screen.

event.frameCount: The total number of frames that have passed since the start of the application
event.time: Time in seconds since the start of the application
event.deltaTime: The time in seconds between the last frame and the current frame

ADDED_TO_STAGE

Dispatched when target sprite instance is added to the stage.

REMOVED_FROM_STAGE

Dispatched when target sprite instance is removed from the stage.

MOUSE_DOWN

Dispatched to all sprite instances on the scene tree when user presses the mouse button or starts the first touch.

event.x: The x-coordinate of the mouse or touch
event.y: The y-coordinate of the mouse or touch

MOUSE_MOVE

Dispatched to all sprite instances on the scene tree when user moves the mouse or moves the first touch.

event.x: The x-coordinate of the mouse or touch
event.y: The y-coordinate of the mouse or touch

MOUSE_UP

Dispatched to all sprite instances on the scene tree when user releases the mouse button or ends the first touch.

event.x: The x-coordinate of the mouse or touch
event.y: The y-coordinate of the mouse or touch

TOUCHES_BEGIN

Dispatched to all sprite instances on the scene tree when one or more fingers touch down.

event.touch: A table with fields x, y and id which specifies the coordinates and id of the current touch
event.allTouches: Array of all touches where each element contains x, y and id

For example, you can print the x, y and id properties of current touch and all touches as:

local function onTouchesBegin{event)
print(event.touch.x, event.touch.y, event.touch.id)
for i=1,#event.allTouches do
print{event.allTouches[i].x, event.allTouches[i].y, event.allTouches[i].id)
end

end

TOUCHES_MOVE

Dispatched to all sprite instances on the scene tree when one or more fingers move.

event.touch: A table with fields x, y and id which specifies the coordinates and id of the current touch
event.allTouches: Array of all touches where each element contains x, y and id

TOUCHES_END

Dispatched to all sprite instances on the scene tree when one or more fingers are raised.

event.touch: A table with fields x, y and id which specifies the coordinates and id of the current touch
event.allTouches: Array of all touches where each element contains x, y and id

TOUCHES_CANCEL

Dispatched to all sprite instances on the scene tree when a system event (such as a low-memory warning) cancels a touch event.

event.touch: A table with fields x, y and id which specifies the coordinates and id of the current touch
event.allTouches: Array of all touches where each element contains x, y and id

KEY_DOWN

Dispatched to all sprite instances on the scene tree when user presses a physical key on the keyboard.

event.keyCode: The key code value of the key pressed

KEY_UP

Dispatched to all sprite instances on the scene tree when user releases a physical key on the keyboard.

event.keyCode: The key code value of the key released

APPLICATION_START

Dispatched to all event listeners (broadcast event) right after the application is launched and all Lua codes are executed.

APPLICATION_EXIT

Dispatched to all event listeners (broadcast event) when the application is about to exit. If an application is forced to be terminated
(e.g. by double tapping the home button and kill the application), this event may not be dispatched. If you want to save your game
state before exiting, save your state also on APPLICATION_SUSPEND event.

APPLICATION_SUSPEND

Dispatched to all event listeners (broadcast event) when when the application is about to move from the active to inactive state. When
an application is inactive, Event.ENTER_FRAME and Event.TIMER events are not dispatched until the application is resumed.

APPLICATION_RESUME

Dispatched to all event listeners (broadcast event) when the application is moved from the inactive to active state.

APPLICATION_BACKGROUND

Dispatched to all event listeners (broadcast event) when the application is now in the background.

APPLICATION_FOREGROUND

Dispatched to all event listeners (broadcast event) when the application is about to enter the foreground.

TIMER

Dispatched whenever a Timer object reaches an interval specified according to the delay property.

TIMER_COMPLETE

Dispatched whenever a Timer object has completed the number of requests specified according to the repeatCount property.

COMPLETE

Dispatched when:

a sound channel has finished playing.
after all data is received and placed in the event.data field

ERROR

Dispatched when urlLoader fails and terminates the download.

PROGRESS

Dispatched by urlLoader as the notification of how far the download has progressed.

event.bytesLoaded: The number of bytes loaded
event.bytesTotal: The total number of bytes that will be loaded

BEGIN_CONTACT

Dispatched by b2.world when two fixtures begin to overlap. This is dispatched for sensors and non-sensors. This event can only occur
inside the time step.

event.contact: The contact
event.fixtureA: The first fixture in this contact
event.fixtureB: The second fixture in this contact

END_CONTACT

Dispatched by b2.world when two fixtures cease to overlap. This is dispatched for sensors and non-sensors. This may be dispatched
when a body is destroyed, so this event can occur outside the time step.

event.contact: The contact
event.fixtureA: The first fixture in this contact
event.fixtureB: The second fixture in this contact

PRE_SOLVE

Dispatched by b2.world after collision detection, but before collision resolution.

event.contact: The contact
event.fixtureA: The first fixture in this contact
event.fixtureB: The second fixture in this contact

POST_SOLVE

Dispatched by b2.world after collision resolution.

event.contact: The contact

event.fixtureA: The first fixture in this contact
event.fixtureB: The second fixture in this contact
event.maximpulse: Maximum of the normal impulses

5. File system

In Gideros runtime, there are 3 kinds of directories: resource, document, and temporary.

You can access these directories using the io library provided by Lua:

io.read("data/list.txt")
You don't need to know the exact path of resource, document and temporary directories because Gideros provides an easy way to
specify files at these directories.

To sum up:

Resource - stores your code and assets (can not be modified by the app)
Document - can be used as persistent storages for files (can be modified by the app)
Temporary - can be used as temporary storages for files (can be modified by the app)

Example of accessing each directory:

io.read("file.txt") --> open file.txt at resource directory to read
io.read("|R|file.txt") --> open file.txt at resource directory to read (same as above)
io.read("|D|file.txt") --> open file.txt at documents directory to read
io.read("|T|file.txt") --> open file.txt at temporary directory to read

Resource directory

Your code, image, audio and all other files are reside at resource directory. The file and folder structure of your asset library shown
below

Library
=17 Test Project
= [0 gfx
S| spritel.png
S| sprite2.pnig
S| background.prig
= [audio
ﬂ game-music.mp3
J3 click.way
E data
lisk, bt
b main.Jua
b game.Jua

is stored at real device and Gideros Player like:

{resource directoryl}/gfx/spritel.png
{resource directoryl}/gfx/sprite2.png
{resource directory}/gfx/background.png
{resource directory}/audio/game-music.mp3
{resource directory}/audio/click.wav
{resource directory}/data/list.txt
{resource directory}/main.lua

{resource directory}/game.lua
Resource directory is the default directory. Therefore, to access the files at resource directory, specify the file path as it is:
local spritel = Texture.new("gfx/spritel.png")
local sprite2 = Texture.new("gfx/sprite2.png")
local background = Texture.new("gfx/background.png"})
local music = Sound.new("audio/game-music.mp3")

local click = Sound.new("audio/click.wav")

Note: Optionally, you can access the files at resource directory by adding “|r|" to the begining of the file name (but you don't need
to):

local spritel = Texture.new("|R|gfx/spritel.png")

Note: Resource directory is read-only and you should not try to write any files there.

Document directory

You can store application created files at document directory. The files created at document directory is permanent between different
application sessions. For example, you can create and then read files at document directory to save player progress. To specify a file at
document directory, append "|p|" to the begining of the file name:

io.write("|D|save.txt")

The main advantage of document directory are that:

Files can be modified
Files can be stored persistantly

That is for example it is recommended to store database files or other user generated information in document directory

Here is a quick example how you can copy file from resource directory to document directory:

--function to copy file

local function copy(src, dst)
local srcf = io.open(src, "rb")
local dstf = io.open(dst, "wb")

local size = 2713 -- good buffer size (8K)
while true do
local block = srcf:read(size)
if not block then break end
dstf:write(block)

end

srcficlose()
dstf:close()

end

--function to check if file exists
local function exists(file)
local f = io.open(file, "rb")
if f == nil then
return false
end
f:close()

return true

--usage
if not exists("|D|database.db") then
copy("database.db", "|D|database.db")

end

Temporary directory

You can create and store temporary files at temporary directory. The files created at temporary directory are not guaranteed to exists
between different application sessions. They may be deleted after your application session finishes. To specify a file at temporary
directory, append "|T|" to the begining of the file name:

io.write("|T|temp.txt")

This storage may be used for example, to display some temporary data, like images downloaded from somewhere:

--download completed

local function onComplete(event)

--store image in temporary folder

local out = io.open("|T|image.png", "wb")
out:write(event.data)
out:close()

--display it to user
local b = Bitmap.new(Texture.new("|T|image.png"))
b:setAnchorPoint (8.5, @.5)
b:setPosition{16@, 248)
stage:addChild(b)
end

--Load image

local loader = UrlLoader.new("http://www.giderosmobile.com/giderosmobile.png")

--add event listener

loader:addEventListener(Event.COMPLETE, onComplete)

Lua Files and Execution Order

By default Gideros executes all lua files on both players and in real app.
We can assume that the order of execution is pretty random, but there are two things guaranteed:

= init.lua will always be executed first
=< main.lua will always be executed last

So the best practice is:

= to add all additional functionality and modifications to existing classes in init.lua
= do all initialization of app etc in main.lua (when all other code was already loaded)
=» wrap the code in any other lua file in a scope as function

Yet better create each lua file as a separate Gideros class, either it will be a scene shown in scene manager or some simple object
represented by class, but there should not be some plain code executed in these files, only in main.lua

Of course, all can be configured

Before an Gideros application starts, all Lua files at asset library are executed one by one. So it is possible to arrange the order of
execution by setting the code dependencies between Lua files.

If you right click a Lua file and select “Code Dependencies...” from popup menu, “Code Dependencies” dialog opens:

& Code Dependencies @
Dependencies Call Order

Codes:

[rnain.lua -

Depends on:

find.lua
["] vardump.lua
] xmllua

main.lua

In this menu, you can set the dependencies between Lua files. For example, if a.lua is dependentto b.lua, b.lua is always executed
befure a.lua.

If you select “Call Order” tab, you can see the execution order:

& Code Dependencies IEI
T

find.lua
vardump.lua
xmllua

main.lua

Note: The file names main.lua and init.lua have special meaning: When an application starts, Gideros runtime tries to execute
init.lua firstand main.lua last.

strict.lua

For the detailed explanation of strict.lua, please refer to http://www.lua.org/pil/14.2.html (http://www.lua.org/pil/14.2.html)

strict.lua checks uses of undeclared global variables. If strict.lua is executed, all global variables must be ‘declared’ through a
regular assignment (even assigning nil will do) in a main chunk before being used anywhere or assigned to inside a function. Although
optional, it is a good habit to use it when developing Lua code.

To execute strict.lua before all other Lua files, simply add strict.lua and init.lua to assetlibrary and make strict.lua
dependent to init.lua .

You can download strict.lua from here (assets/strict.lua) that originally comes with the Lua distribution.

6. Automatic Image Resolution

With the introduction of iPad, iPhone 4 and variety of devices running Android, now there are multiple resolutions that game
developers should consider. To efficiently use texture memory and processing power of GPUs, applications should use low-resolution
images on devices with low-resolution screens and high-resolution images on devices with high-resolution screens. With the help of
automatic image resolution, you can bundle both low and high resolution images together with your application and Gideros
automatically selects the best resolution according to your scaling.

Automatic image resolution is directly related to automatic screen scaling. For example, if your screen is automatically scaled by 2, then
using the double-sized image is the best choice in terms of quality and efficiency.

Open the project “Hardware/Automatic Image Resolution” to see automatic image resolution in action. Run this example multiple
times by selecting different resolutions on Gideros Player such as 320x480, 640x960 and 480x800. As you can see, for the different
resolutions, the original 200x200 image or high-resolution variants (300x300 and 400x400) are selected and displayed automatically.

Now right click on the project name and select “Properties...” to understand how we configure automatic image resolution parameters:

+ Project Properties

Scale Mode: Letterboz v
Logical Dimensions: | 320 ¥ 480 px
Orientation: Portrait b
Image Scales
Suffiz Scale
@zx b4
@15 15
L+ JI l
E K i [Cancel]

In this example, our logical dimensions are 320x480 and scale mode is Letterbox. So the scaling factor for a device with screen

resolution 320x480 (older iPhones) is 1, scaling factor for 480x960 (iPhone 4) is 2 and scaling factor for 480x800 (Samsung Galaxy S) is
around 1.5.

As you can see, we've configured image scales as:

Image Scales

Suffix Scale
@2 2
@1.5x 1.5

So if you have a base image with resolution 200x200 with name “image.png”, you provide these 3 images:

image.png (200x200)
image@1.5x.png (300x300)
image@2x.png (400x400)

and let Gideros pick the appropriate one.

Providing the alternative images (in our example, these are image@1.5x.png and image@2x.png) is optional but you should always
provide the base image (image.png). When Gideros cannot find the alternative image to load, it loads the base image. Also size
calculations are done according to the size of the base image.

Design for High Resolution Devices

In our example, we set the logical dimensions as 320x480 and provide higher-resolution alternative images. On the other hand, it's
possible to set logical dimensions as 480x960 or 768x1024 and provide lower-resolution images. In this case, we can configure the
image scales like:

Image Scales

Suffice Scale
@half 0.5

and provide alternative images with suffix “@half” as half-resolution of the original ones.

Bitmap Fonts and Texture Packs

Automatic image resolution works with bitmap fonts and texture packs also. Assume you create a bitmap font with size 20 and export
it as “font.txt” + “font.png”. To obtain the double-resolution alternative, export the same font with size 40 as “font@2x.txt" +
“font@2x.png".

A texture pack is a large image which contains many smaller sub-images. There is one thing to remember while creating multi-
resolution texture packs: the names of the sub-images must be same across the texture pack variants. A practical way to achieve this is
to store different resolution sub-image sets into their own directories. You can check the sample “Hardware/Automatic Texture Pack
Resolution” about this.

7. Automatic Screen Scaling

To handle a wide variety of resolutions, Gideros provides a functionaly called Automatic Screen Scaling.

Before starting your project, you determine your logical resolution and position all your sprites according to this. For example, if you
determine your logical resolution as 320x480, your upper left corner will be (0, 0), your lower right corner will be (319, 479) and the
center coordinate of your screen will be (160, 240). Then according to your scale mode, Gideros automaticly scales your screen
according to the real resolution of your hardware.

There are 8 types of scaling modes:

1.

N o

No scale: No scaling simply tells your application not to scale at all. In this mode, there’s no scaling at all, and your stage sits on
the upper left corner of the device screen.

. No scale, center: This mode is similar to “no scale”, except one minor difference: Stage is centered on the device screen.
. Pixel perfect: This mode is similar to “No scale, center”, with a minor difference: Scale value is rounded to values like 1/3, %, 1,

2 or 3. This mode can be used in games which benefit from pixel art games - it guarantees a crisp look and feel for screen
sprites.

. Letterbox: Preserving the aspect ratio, it scales the stage so it fits the content on the device screen. There's a possibility that

blank areas may occur on the device. Mostly, developer keeps the background a bit “bigger” in order to eliminate these blank
areas and fill it with background.

. Crop: This mode again does preserve the aspect ratio, and ensures that no blank areas are left on the screen. Hence, some

part of the background may be outside the visible area.

Stretch: The whole stage sits on the screen. Since x/y is not preserved, there's a possibility that aspect ratio might change.

Fit width: This mode fits the width of the stage, preserving the aspect ratio. It's possible that there might be blank areas at the
top and bottom of the screen, or these areas may be outside the visible area. If you have more than one screen in your
application, and screen transition is from left to right (or vice versa), then this mode is a perfect fit for you.

Fit height: Similar to fit width, this time guaranteeing to fit the height. Very suitable for shoot'em-up type games.

